quinta-feira, 31 de janeiro de 2019











x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D





 também segue uma distribuição de Poisson cujo parâmetro é igual à soma dos .

x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



em seguida, os limites do parâmetro  são dadas por: .
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Na teoria da probabilidade e na estatística, a distribuição de Poisson é uma distribuição de probabilidade de variável aleatória discreta que expressa a probabilidade de uma série de eventos ocorrer num certo período de tempo se estes eventos ocorrem independentemente de quando ocorreu o último evento.
A distribuição foi descoberta por Siméon Denis Poisson (1781–1840) e publicada, conjuntamente com a sua teoria da probabilidade, em 1838 no seu trabalho Recherches sur la probabilité des jugements en matières criminelles et matière civile("Inquérito sobre a probabilidade em julgamentos sobre matérias criminais e civis"). O trabalho focava-se em certas variáveis aleatórias N que contavam, entre outras coisas, o número de ocorrências discretas de um certo fenômeno durante um intervalo de tempo de determinada duração. A probabilidade de que existam exactamente k ocorrências (k sendo um inteironão negativo, k = 0, 1, 2, ...) é
onde
  • e é base do logaritmo natural (e = 2.71828...),
  • k! é o fatorial de k,
  • λ é um número real, igual ao número esperado de ocorrências que ocorrem num dado intervalo de tempo. Por exemplo, se o evento ocorre a uma média de 4 minutos, e estamos interessados no número de eventos que ocorrem num intervalo de 10 minutos, usariámos como modelo a distribuição de Poisson com λ = 10/4 = 2.5.
Como função de k, esta é a função de probabilidade. A distribuição de Poisson pode ser derivada como um caso limite da distribuição binomial.

    Processo de Poisson[editar | editar código-fonte]

    Ver artigo principal: Processo de Poisson
    A distribuição de Poisson aparece em vários problemas físicos, com a seguinte formulação: considerando uma data inicial (t = 0), seja N(t) o número de eventos que ocorrem até uma certa data t. Por exemplo, N(t) pode ser um modelo para o número de impactos de asteróides maiores que um certo tamanho desde uma certa data de referência.
    Uma aproximação que pode ser considerada é que a probabilidade de acontecer um evento em qualquer intervalo não depende (no sentido de independência estatística) da probabilidade de acontecer em qualquer outro intervalo disjunto.
    Neste caso, a solução para o problema é o processo estocástico chamado de Processo de Poisson, para o qual vale:
    em que λ é uma constante (de unidade inversa da unidade do tempo).
    Ou seja, o número de eventos até uma época qualquer t é uma distribuição de Poisson com parâmetro λ t.

    Propriedades[editar | editar código-fonte]

    Média[editar | editar código-fonte]

    valor esperado de uma distribuição de Poisson é igual a λ. Esta propriedade pode ser derivada facilmente[1]:

    Em linguagem matemáticaEm Português
    Por definição, a esperança de uma variável aleatória X é igual à soma de cada uma das suas possíveis ocorrências ponderadas pela probabilidade de que estas ocorrências aconteçam.
    No caso de variáveis com distribuição, a probabilidade de que determinado evento ocorra é calculado por :. Portanto, este valor foi substituído na fórmula.
    Esta expressão equivale à expressão da linha imediatamente superior; apenas se substituiu a expressão de somatório pela soma infinita para melhor compreensão. Note que como o primeiro termo é sempre igual a zero, podemos reescrever 
    Como Fazemos uma substituição para facilitar o cálculo.
    Tomamos a substituição acima e tiramos a constante  para fora do somatório (pois o primeiro termo da expressão imediatamente superior é igual à .
    Nova transformação para facilitar os cálculos...
     Abrindo o somatório, verifica-se que a série converge para 
    Obtemos 
    Como queríamos demonstrar

    Variância[editar | editar código-fonte]

    variância de uma distribuição de Poisson é igual a λ.

    Soma de variáveis[editar | editar código-fonte]

    soma de duas variáveis de Poisson independentes é ainda uma variável de Poisson com parâmetro igual à soma dos respectivos parâmetros. Ou seja, se segue uma distribuição de Poisson com parâmetro  e as variáveis aleatórias  são estatisticamente independentes, então
     também segue uma distribuição de Poisson cujo parâmetro é igual à soma dos .
    Por exemplo,  é uma variável aleatória que representa o número de óbitos por mil nascimentos na cidade "A" (distribuição de Poisson com média 1,2, digamos) e  é uma variável aleatória que representa o número de óbitos por mil nascimentos na cidade "B" (variável de Poisson com média 3). Ao todo, o número de óbitos por mil nascimentos nas cidades "A" e "B" têm distribuição de Poisson com média .

    Intervalo de confiança[editar | editar código-fonte]

    Um método rápido e fácil para calcular um intervalo de confiança de aproximada de λ, é proposto na Guerriero (2012).[2] Dado um conjunto de eventos k (pelo menos 15 - 20) ao longo de um período de tempo T, os limites do intervalo confiança para a frequência são dadas por:
    em seguida, os limites do parâmetro  são dadas por: .

    Exemplos[editar | editar código-fonte]

    A distribuição de Poisson representa um modelo probabilístico adequado para o estudo de um grande número de fenômenos observáveis. Eis alguns exemplos:
    • Chamadas telefônicas por unidade de tempo;
    • Defeitos por unidade de área;
    • Acidentes por unidade de tempo;
    • Chegada de clientes a um supermercado por unidade de tempo;
    • Número de glóbulos sangüíneos visíveis ao microscópio por unidade de área;
    • Número de partículas emitidas por uma fonte de material radioativo por unidade de
    tempo.












    Estadologia Graceli – 4. E princípio entrópico tempo / instabilidade.


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.






    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].